The implication problem for functional and inclusion dependencies
نویسندگان
چکیده
منابع مشابه
Solving the Implication Problem for XML Functional Dependencies with Properties
Due to the complex nature of XML, finding classes of integrity constraints for XML data that are both expressive and practical is an important but challenging task. In this paper, we study a class of XML functional dependencies (called pXFDs) defined on the basis of tree homomorphism. We establish a semantic equivalence between the implications problems for pXFDs and for propositional Horn clau...
متن کاملThe Implication Problem for Unary Functional Dependencies in XML
XML is of great importance in information storage and retrieval because of its recent emergence as a standard for data representation and interchange on the Internet. However XML provides little semantic content and as a result several papers have addressed the topic of how to improve the semantic expressiveness of XML. Among the most important of these approaches has been that of deening integ...
متن کاملThe Implication Problem for Functional Dependencies in Complete Xml Documents
With the growing use of XML as a format for the permanent storage of data, the study of functional dependencies in XML (XFDs) is of fundamental importance in understanding how to effectively design XML databases without redundancy or update problems. We investigate a central problem in dependency theory, that of determining when a set of XFDs logically implies another XFD in the context of XML ...
متن کاملArmstrong Databases for Functional and Inclusion Dependencies
An Armstrong database is a database that obeys precisely a given set of sentences (and their logical consequences) and no other sentences of a given type. It is shown that if the sentences of interest are inclusion dependencies and standard functional dependencies (functional dependencies for which the left-hand side is nonempty), then there is always an Armstrong database for each set of sente...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Control
سال: 1983
ISSN: 0019-9958
DOI: 10.1016/s0019-9958(83)80002-3